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An asymmetric reduction of ethyl pyruvate was carried out
using bakers' yeast cell free extract with addition of NADPH in
catalytic amounts and glucose as a hydride source. The total
turnover number of NADPH reached 7680. The efficiency of
the cell free extract is discussed.

The asymmetric reduction of ketones by use of isolated
dehydrogenases has been well documented as a useful method
in organic synthesis." High enantioselectivities and high yields
have been achieved by the method but the high cost of
nicotinamide cofactor, NAD(P)H, has necessitated its efficient
regeneration in situ. Thus many enzymatic methods have been
developed for the NAD(P)H regeneration using various
substrate/enzyme  systems  such as  glucose/glucose
dehydrogenase, glucose-6-phospate/glucose-6-phosphate
dehydrogenase, alcohols/alcohol dehydrogenase, and so on.

In the previous papers,”> we have demonstrated that
asymmetric reductions by use of bakers' yeast cell free extract,
compared with bakers' yeast whole cells, can be carried out with
higher chemical and optical yields with additives to control the
activity of enzymes contained. Herein we wish to report another
striking feature of the cell free extract that it can regenerate
NADPH from NADP efficiently to give a large total turnover
number of 7680 requiring only glucose as a hydride source
without addition of any dehydrogenase for the cofactor
regeneration.

Figure 1 shows the time course of the reduction of ethyl
pyruvate (1.00 mmol) to ethyl lactate by use of bakers' yeast cell
free extract (20 mL from 10 g of pressed bakers' yeast) with
glucose (3.0 mmol) and NADPH (1.00, 0.50, 0.25, and 0.125
umol) at 30 °C.> The reduction of ethyl pyruvate proceeded to

completion after 70-90 min when 1.00 pmol of NADPH was
added, with a total turnover number of 1000 (mol product
formed/mol NADPH added). The reduction was slowed down
by decreasing the amount of NADPH added, but the maximum
conversion of 96% was attained with 0.125 wmol of NADPH
after 240 min* to give a total turnover number of 7680.

In order to clarify the factors giving such a high total turnover
number, kinetic measurements were carried out as shown in
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Figure 1. The time course of asymmetric reduction of ethyl
pyruvate to ethyl lactate using bakers' yeast cell free extract with
NADPH in catalytic amounts. Ethyl pyruvate 1.00 mmol, cell
free extract 20 mL (0.1 M MES buffer/NaOH, pH 6, pressed
bakers' yeast 10 g), glucose 3 mmol, 30 °C.

Table 1. Effect of NADPH concentrations on reduction rates and NADPH turnover numbers

NADPH NADPH
NADPH Initial rate  Turnover number Total turnover number K,
. a ) 1 1 / mol product
Reduction /umo (/uM)  /mmol min /min mol NADPH /mM
1.00 (50.0) 0.036 36 1000
)OJ\ oH 050  (250) 0029 58 2000
A 0.01
CO,Et /\C02Et 025  (12.5) 0.023 e} >3700
0.125 (6.25) 0.016 130 7680
o) OH 10 (500) 0.06 6 100
)]\/OAC o /?\/OAC o (500) 0018 18 1000 0.2
0.5 (25.0) 0.009 18 1540

*Substrate 1 mmol (50 mM), bakers' yeast cell free extract 20 mL (0.1 M MES buffer/NaOH, pH 6, pressed bakers' yeast 10 g),

glucose 3 mmol, 30 °C.
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Table 1.° The reduction of 1-acetoxy-2-propanone Wwas
conducted for comparison.

The following three factors are worthy of remark. 1) The
turnover number (min™") is high. When it is low, the NADPH
is degraded in the cell free extract during a longer reaction time.*
2) The binding of NADPH to the reductase occurs more
efficiently. As shown in Table 1, a smaller K, value of 0.01
mM is estimated for the ethyl pyruvate-reducing enzyme but a
larger one of 0.2 mM is estimated for the 1-acetoxy-2-
propanone-reducing enzyme.® 3) The turnover number of
NADPH is still increasing in the reduction of ethyl pyruvate.
Fortunately and unexpectedly, the regeneration of NADPH from
NADP* is fast enough. The regeneration is considered to
proceed by way of the hexose monophosphate-pentose
pathway. Here, one molecule of ATP is consumed in the initial
conversion of glucose to its 6-phosphate catalyzed by
hexokinase, and one molecule of the 6-phosphate can regenerate
two molecules of NADPH in the pathway. Therefore, 1 mmol
of the ketone to be reduced to completion requires at least 0.5
mmol of ATP. Thus it is obvious that the regeneration of
NADPH in the present preparative scale is driven by a
spontancous supply of ATP in the bakers' yeast cell free
extract.”

In conclusion, we have demonstrated potentialities of the
bakers’ yeast cell free extract in the asymmetric reduction.
Further uses of the cell free extract are in progress in our
laboratory.
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